Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.790
Filtrar
1.
Eur J Med Chem ; 269: 116298, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493727

RESUMO

The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.


Assuntos
Canabinoides , Receptor CB2 de Canabinoide , Camundongos , Animais , Pirróis/farmacologia , Canabinoides/farmacologia , Neurotransmissores/farmacologia , Derivados da Escopolamina , Agonistas de Receptores de Canabinoides/farmacologia , Receptor CB1 de Canabinoide
2.
Auton Neurosci ; 252: 103154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330594

RESUMO

INTRODUCTION: Autonomic dysreflexia (AD) is a potentially life-threatening consequence in high (above T6) spinal cord injury that involves multiple incompletely understood mechanisms. While peripheral arteriolar vasoconstriction, which controls systemic vascular resistance, is documented to be pronounced during AD, the pathophysiological neurovascular junction mechanisms of this vasoconstriction are undefined. One hypothesized mechanism is increased neuronal release of norepinephrine and co-transmitters. We tested this by examining the effects of blockade of pre-synaptic neural release of norepinephrine and co-transmitters on cutaneous vasoconstriction during AD, using a novel non-invasive technique; bretylium (BT) iontophoresis followed by skin blood flow measurements via laser doppler flowmetry (LDF). METHODS: Bretylium, a sympathetic neuronal blocking agent (blocks release of norepinephrine and co-transmitters) was applied iontophoretically to the skin of a sensate (arm) and insensate (leg) area in 8 males with motor complete tetraplegia. An nearby untreated site served as control (CON). Cutaneous vascular conductance (CVC) was measured (CVC = LDF/mean arterial pressure) at normotension before AD was elicited by bladder stimulation. The percent drop in CVC values from pre-AD vs. AD was compared among BT and CON sites in sensate and insensate areas. RESULTS: There was a significant effect of treatment but no significant effect of limb/sensation or interaction of limb x treatment on CVC. The percent drop in CVC between BT and CON treated sites was 25.7±1.75 vs. 39.4±0.87, respectively (P = 0.004). CONCLUSION: Bretylium attenuates, but does not fully abolish vasoconstriction during AD. This suggests release of norepinephrine and cotransmitters from cutaneous sympathetic nerves is involved in cutaneous vasoconstriction during AD.


Assuntos
Disreflexia Autonômica , Compostos de Bretílio , Vasoconstrição , Masculino , Humanos , Temperatura Cutânea , Pele/inervação , Norepinefrina/farmacologia , Neurotransmissores/farmacologia , Fluxo Sanguíneo Regional
3.
Braz J Med Biol Res ; 57: e12829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359270

RESUMO

This study was conducted to evaluate how sterubin affects rotenone-induced Parkinson's disease (PD) in rats. A total of 24 rats were distributed into 4 equal groups: normal saline control and rotenone control were administered saline or rotenone (ROT), respectively, orally; sterubin 10 received ROT + sterubin 10 mg/kg po; and sterubin alone was administered to the test group (10 mg/kg). Rats of the normal saline and sterubin alone groups received sunflower oil injection (sc) daily, 1 h after receiving the treatments cited above, while rats of the other groups received rotenone injection (0.5 mg/kg, sc). The treatment was continued over the course of 28 days daily. On the 29th day, catalepsy and akinesia were assessed. The rats were then euthanized, and the brain was extracted for estimation of endogenous antioxidants (MDA: malondialdehyde, GSH: reduced glutathione, CAT: catalase, SOD: superoxide dismutase), nitrative (nitrite) stress markers, neuroinflammatory cytokines, and neurotransmitter levels and their metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), dopamine (DA), norepinephrine (NE), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA)). Akinesia and catatonia caused by ROT reduced the levels of endogenous antioxidants (GSH, CAT, and SOD), elevated the MDA level, and altered the levels of nitrites, neurotransmitters, and their metabolites. Sterubin restored the neurobehavioral deficits, oxidative stress, and metabolites of altered neurotransmitters caused by ROT. Results demonstrated the anti-Parkinson's activities of sterubin in ROT-treated rats.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Antioxidantes/farmacologia , Rotenona/farmacologia , Solução Salina/farmacologia , Estresse Oxidativo , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia , Superóxido Dismutase , Modelos Animais de Doenças
4.
Eur J Pharmacol ; 968: 176384, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38342360

RESUMO

Basal electroretinogram (ERG) oscillations have shown predictive value for modifiable risk factors for type 2 diabetes. However, their origin remains unknown. Here, we seek to establish the pharmacological profile of the low delta-like (δ1) wave in the mouse because it shows light sensitivity in the form of a decreased peak frequency upon photopic exposure. Applying neuropharmacological drugs by intravitreal injection, we eliminated the δ1 wave using lidocaine or by blocking all chemical and electrical synapses. The δ1 wave was insensitive to the blockade of photoreceptor input, but was accelerated when all inhibitory or ionotropic inhibitory receptors in the retina were antagonized. The sole blockade of GABAA, GABAB, GABAC, and glycine receptors also accelerated the δ1 wave. In contrast, the gap junction blockade slowed the δ1 wave. Both GABAA receptors and gap junctions contribute to the light sensitivity of the δ1 wave. We further found that the day light-activated neuromodulators dopamine and nitric oxide donors mimicked the effect of photopic exposure on the δ1 wave. All drug effects were validated through light flash-evoked ERG responses. Our data indicate that the low δ-like intrinsic wave detected by the non-photic ERG arises from an inner retinal circuit regulated by inhibitory neurotransmission and nitric oxide/dopamine-sensitive gap junction-mediated communication.


Assuntos
Diabetes Mellitus Tipo 2 , Dopamina , Camundongos , Animais , Dopamina/farmacologia , Fotofobia , Estimulação Luminosa , Retina , Eletrorretinografia , Neurotransmissores/farmacologia , Receptores de GABA-A , Ácido gama-Aminobutírico/farmacologia
5.
Int Immunopharmacol ; 129: 111639, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38335654

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a debilitating inflammatory disease characterized by demyelination, varied remyelination conservation, and partial axonal retention in central nervous system (CNS) lesions. The p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in the pathophysiology of MS. Embelin (EMB), derived from the Embelia ribes plant, possesses diverse biological activities, including anti-inflammatory properties. OBJECTIVE: This study aimed to investigate the neuroprotective effects of EMB in an ethidium bromide (EB)-induced model of MS in Wistar rats. METHODS: Wistar rats were randomly divided into five groups (n = 8). MS-like manifestations were induced by injecting EB (0.1 %/10 µl) into the intracerebropeduncle (ICP) region of the rat brain for seven consecutive days. EMB was administered at doses of 1.25, 2.5, and 5 mg/kg. Behavioral assessments, neuroinflammatory cytokine analysis like tumor necrosis factor-α, interleukin-1-ß, interleukin-6 (TNF-α, IL-1ß, IL-6), oxidative stress marker measurements malondialdehyde, reduced glutathione, superoxide dismutase (MDA, GSH, SOD), and nitrite (NO), Acetylcholinesterase enzyme (AchE), and neurotransmitter level analysis, dopamine, serotonin, and norepinephrine (DA, 5-HT, and NE) were conducted. RESULTS: The study assessed behavioral, neurochemical, biochemical, and neuroinflammatory parameters, along with the modulation of p38 MAPK signaling. EMB administration significantly ameliorated neurological consequences induced by EB, improving motor coordination and gait abnormalities in rats. Furthermore, EMB effectively reduced neuroinflammatory cytokines (TNF-α, IL-1ß, IL-6) and oxidative stress markers (AchE, SOD, MDA, GSH, nitrite). Notably, EMB exhibited a modulatory effect on neurotransmitter levels, increasing GABA, DA, and 5-HT, while reducing glutamate in EB-treated groups. CONCLUSION: This study demonstrates the neuroprotective potential of EMB against the EB-induced model of MS in rats. EMB administration mitigated neurological impairments, attenuated neuroinflammation, alleviated oxidative stress, and restored neurotransmitter balance. These findings highlight the promise of EMB as a therapeutic candidate for MS treatment, providing insights into its potential mechanism of action involving the modulation of p38 MAPK signaling.


Assuntos
Benzoquinonas , Esclerose Múltipla , Fármacos Neuroprotetores , Ratos , Animais , Ratos Wistar , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Etídio/farmacologia , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/tratamento farmacológico , Acetilcolinesterase/metabolismo , Nitritos , Serotonina/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Transdução de Sinais , Neurotransmissores/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Superóxido Dismutase/metabolismo
6.
Neurosci Lett ; 823: 137652, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38266975

RESUMO

BACKGROUND: Adderall is a central nervous system stimulant while luteolin has neuroprotective activity. This study aimed to determine whether luteolin can amend neural neurotransmitters, antioxidants, and inflammatory markers in the cerebral cortex of Adderall exposed rats. METHODS: Thirty-six male albino rats were divided into 6 equal groups, Control, Luteolin (1 g/kg)-treated, and Luteolin (2 g/kg)-treated groups: normal rats were orally administrated once a day with 2 ml distilled water, luteolin (1 g/kg), and luteolin (2 g/kg), respectively for 4 weeks. Adderall rats, Adderall rats + luteolin (1 g/kg)-treated, and Adderall rats + luteolin (2 g/kg)-treated groups: normal rats were orally administrated once a day with 10 mg/kg of Adderall, 3 days/week for 4 weeks, then these rats orally administrated daily once a day with 2 ml of distilled water, luteolin (1 g/kg), and luteolin (2 g/kg), respectively for another 4 weeks. RESULTS AND CONCLUSION: Adderall decreased superoxide dismutase, glutathione peroxidase, catalase, NADPH oxidase, interleukin-10, serotonin, dopamine, norepinephrine, γ-aminobutyric acid, and acetylcoline estrase but increased malondialdehyde, conjugated dienes, oxidative index, tumour necrosis factor-α, interleukin-1ß, and interleukin-6 levels in the cerebral cortex. Adderall increased the expression of glial fibrillary acidic protein, ionized calcium binding adaptor molecule 1, and anti-calbindin in the cerebral cortex of Adderall-treated rats. In Adderall-treated rats, daily oral administration of luteolin for 4 weeks brought all these parameters back to values that were close to control where higher dose was more effective than lower dose. The importance of this research is to provide natural compound that amends Adderall-related neural disturbances and this natural compound is cheap, avaliable without any side effect and it does not interfer with Adderall efficiency.


Assuntos
Anfetaminas , Antioxidantes , Luteolina , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Luteolina/farmacologia , Ratos Wistar , Córtex Cerebral/metabolismo , Neurotransmissores/farmacologia , Neurotransmissores/metabolismo , Água/farmacologia , Estresse Oxidativo
7.
Schizophr Bull ; 50(1): 187-198, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119525

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia (SCZ) is associated with complex crosstalk between the gut microbiota and host metabolism, but the underlying mechanism remains elusive. Investigating the aberrant neurotransmitter processes reflected by alterations identified using multiomics analysis is valuable to fully explain the pathogenesis of SCZ. STUDY DESIGN: We conducted an integrative analysis of multiomics data, including the serum metabolome, fecal metagenome, single nucleotide polymorphism data, and neuroimaging data obtained from a cohort of 127 drug-naïve, first-episode SCZ patients and 92 healthy controls to characterize the microbiome-gut-brain axis in SCZ patients. We used pathway-based polygenic risk score (PRS) analyses to determine the biological pathways contributing to genetic risk and mediation effect analyses to determine the important neuroimaging features. Additionally, a random forest model was generated for effective SCZ diagnosis. STUDY RESULTS: We found that the altered metabolome and dysregulated microbiome were associated with neuroactive metabolites, including gamma-aminobutyric acid (GABA), tryptophan, and short-chain fatty acids. Further structural and functional magnetic resonance imaging analyses highlighted that gray matter volume and functional connectivity disturbances mediate the relationships between Ruminococcus_torgues and Collinsella_aerofaciens and symptom severity and the relationships between species Lactobacillus_ruminis and differential metabolites l-2,4-diaminobutyric acid and N-acetylserotonin and cognitive function. Moreover, analyses of the Polygenic Risk Score (PRS) support that alterations in GABA and tryptophan neurotransmitter pathways are associated with SCZ risk, and GABA might be a more dominant contributor. CONCLUSIONS: This study provides new insights into systematic relationships among genes, metabolism, and the gut microbiota that affect brain functional connectivity, thereby affecting SCZ pathogenesis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Esquizofrenia , Humanos , Triptofano , Esquizofrenia/genética , Multiômica , Encéfalo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia
8.
Neurochem Res ; 49(2): 453-465, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897557

RESUMO

α2-Adrenoreceptors (ARs) are main Gi-protein coupled autoreceptors in sympathetic nerve terminals and targets for dexmedetomidine (DEX), a widely used sedative. We hypothesize that α2-ARs are also potent regulators of neuromuscular transmission via G protein-gated inwardly rectifying potassium (GIRK) channels. Using extracellular microelectrode recording of postsynaptic potentials, we found DEX-induced inhibition of spontaneous and evoked neurotransmitter release as well as desynchronization of evoked exocytotic events in the mouse diaphragm neuromuscular junction. These effects were suppressed by SKF-86,466, a selective α2-AR antagonist. An activator of GIRK channels ML297 had the same effects on neurotransmitter release as DEX. By contrast, inhibition of GIRK channels with tertiapin-Q prevented the action of DEX on evoked neurotransmitter release, but not on spontaneous exocytosis. The synaptic vesicle exocytosis is strongly dependent on Ca2+ influx through voltage-gated Ca2+ channels (VGCCs), which can be negatively regulated via α2-AR - GIRK channel axis. Indeed, inhibition of P/Q-, L-, N- or R-type VGCCs prevented the inhibitory action of DEX on evoked neurotransmitter release; antagonists of P/Q- and N-type channels also suppressed the DEX-mediated desynchronization of evoked exocytotic events. Furthermore, inhibition of P/Q-, L- or N-type VGCCs precluded the frequency decrease of spontaneous exocytosis upon DEX application. Thus, α2-ARs acting via GIRK channels and VGCCs (mainly, P/Q- and N-types) exert inhibitory effect on the neuromuscular communication by attenuating and desynchronizing evoked exocytosis. In addition, α2-ARs can suppress spontaneous exocytosis through GIRK channel-independent, but VGCC-dependent pathway.


Assuntos
Junção Neuromuscular , Transmissão Sináptica , Camundongos , Animais , Transmissão Sináptica/fisiologia , Junção Neuromuscular/fisiologia , Potássio , Proteínas de Ligação ao GTP , Neurotransmissores/farmacologia
9.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37968117

RESUMO

Neuromodulation lends flexibility to neural circuit operation but the general notion that different neuromodulators sculpt neural circuit activity into distinct and characteristic patterns is complicated by interindividual variability. In addition, some neuromodulators converge onto the same signaling pathways, with similar effects on neurons and synapses. We compared the effects of three neuropeptides on the rhythmic pyloric circuit in the stomatogastric ganglion of male crabs, Cancer borealis Proctolin (PROC), crustacean cardioactive peptide (CCAP), and red pigment concentrating hormone (RPCH) activate the same modulatory inward current, I MI, and have convergent actions on synapses. However, while PROC targets all four neuron types in the core pyloric circuit, CCAP and RPCH target the same subset of only two neurons. After removal of spontaneous neuromodulator release, none of the neuropeptides restored the control cycle frequency, but all restored the relative timing between neuron types. Consequently, differences between neuropeptide effects were mainly found in the spiking activity of different neuron types. We performed statistical comparisons using the Euclidean distance in the multidimensional space of normalized output attributes to obtain a single measure of difference between modulatory states. Across preparations, the circuit output in PROC was distinguishable from CCAP and RPCH, but CCAP and RPCH were not distinguishable from each other. However, we argue that even between PROC and the other two neuropeptides, population data overlapped enough to prevent reliable identification of individual output patterns as characteristic for a specific neuropeptide. We confirmed this notion by showing that blind classifications by machine learning algorithms were only moderately successful.Significance Statement It is commonly assumed that distinct behaviors or circuit activities can be elicited by different neuromodulators. Yet it is unknown to what extent these characteristic actions remain distinct across individuals. We use a well-studied circuit model of neuromodulation to examine the effects of three neuropeptides, each known to produce a distinct activity pattern in controlled studies. We find that, when compared across individuals, the three peptides elicit activity patterns that are either statistically indistinguishable or show too much overlap to be labeled characteristic. We ascribe this to interindividual variability and overlapping subcellular actions of the modulators. Because both factors are common in all neural circuits, these findings have broad significance for understanding chemical neuromodulatory actions while considering interindividual variability.


Assuntos
Braquiúros , Neuropeptídeos , Masculino , Humanos , Animais , Neuropeptídeos/metabolismo , Peptídeos/farmacologia , Neurônios/fisiologia , Neurotransmissores/farmacologia , Transdução de Sinais , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia
10.
Biol Trace Elem Res ; 202(2): 548-557, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37289414

RESUMO

Non-specifically binding of aluminum to various substances in the organism can result in toxicity. The accumulation of large amounts of aluminum can cause an imbalance in metal homeostasis and interfere with the synthesis and release of neurotransmitters. Flavonoids have strong metal chelating activity, which can reduce damage to the central nervous system. The purpose of this study was to investigate the protective effect of three representative flavonoids, rutin, puerarin and silymarin, on the brain toxicity induced by long-term exposure to aluminum trichloride (AlCl3). Sixty-four Wistar rats were randomly divided into eight groups (n = 8). The rats in six intervention groups were given 100 or 200 mg/kg BW/day of three different flavonoids for four weeks after a 4-week exposure to 281.40 mg/kg BW/day AlCl3·6H2O, while the rats in the AlCl3-toxicity and control groups were given the vehicle after the period of AlCl3 exposure. The results showed that rutin, puerarin, and silymarin could increase the concentrations of magnesium, iron, and zinc in the brains of the rats. Moreover, the intake of these three flavonoids regulated the homeostasis of amino acid neurotransmitters and adjusted the concentrations of monoamine neurotransmitters to normal levels. Taken together, our data suggest that rutin, puerarin, and silymarin could ameliorate AlCl3-induced brain toxicity in the rats by regulating imbalance of metal elements and neurotransmitters in the brains of rats.


Assuntos
Alumínio , Silimarina , Ratos , Animais , Alumínio/toxicidade , Silimarina/farmacologia , Ratos Wistar , Compostos de Alumínio/toxicidade , Rutina/farmacologia , Estresse Oxidativo , Encéfalo , Flavonoides , Neurotransmissores/farmacologia
12.
J Neurophysiol ; 131(2): 137-151, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150542

RESUMO

The Drosophila neuropeptide, DPKQDFMRFamide, was previously shown to enhance excitatory junctional potentials (EJPs) and muscle contraction by both presynaptic and postsynaptic actions. Since the peptide acts on both sides of the synaptic cleft, it has been difficult to examine postsynaptic modulatory mechanisms, particularly when contractions are elicited by nerve stimulation. Here, postsynaptic actions are examined in 3rd instar larvae by applying peptide and the excitatory neurotransmitter, l-glutamate, in the bathing solution to elicit contractions after silencing motor output by removing the central nervous system (CNS). DPKQDFMRFamide enhanced glutamate-evoked contractions at low concentrations (EC50 1.3 nM), consistent with its role as a neurohormone, and the combined effect of both substances was supra-additive. Glutamate-evoked contractions were also enhanced when transmitter release was blocked in temperature-sensitive (Shibire) mutants, confirming the peptide's postsynaptic action. The peptide increased membrane depolarization in muscle when co-applied with glutamate, and its effects were blocked by nifedipine, an L-type channel blocker, indicating effects at the plasma membrane involving calcium influx. DPKQDFMRFamide also enhanced contractions induced by caffeine in the absence of extracellular calcium, suggesting increased calcium release from the sarcoplasmic reticulum (SR) or effects downstream of calcium release from the SR. The peptide's effects do not appear to involve calcium/calmodulin-dependent protein kinase II (CaMKII), previously shown to mediate presynaptic effects. The approach used here might be useful for examining postsynaptic effects of neurohormones and cotransmitters in other systems.NEW & NOTEWORTHY Distinguishing presynaptic and postsynaptic effects of neurohormones is a long-standing challenge in many model organisms. Here, postsynaptic actions of DPKQDFMRFamide are demonstrated by assessing its ability to potentiate contractions elicited by direct application of the neurotransmitter, glutamate, when axons are silent and when transmitter release is blocked. The peptide acts at multiple sites to increase contraction, increasing glutamate-induced depolarization at the cell membrane, acting on L-type channels, and acting downstream of calcium release from the sarcoplasmic reticulum.


Assuntos
Drosophila , Neuropeptídeos , Animais , Drosophila/metabolismo , Junção Neuromuscular/fisiologia , Cálcio , Neuropeptídeos/farmacologia , Contração Muscular , Peptídeos/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glutamatos , Neurotransmissores/farmacologia
13.
Neurosci Lett ; 820: 137592, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38103631

RESUMO

Despite affecting over 1.5 billion people globally, hearing loss (HL) has been referred to as an "invisible disability", with noise exposure being a major causative factor. Accumulating evidence suggests that HL can induce cognitive impairment. However, relatively little is known about the effects of noise-induced hearing loss (NIHL) on social memory. This study aimed to further investigate the effect of NIHL on social behaviours in mice. We established a rodent model of NIHL using 4-week-old C57BL/6J mice who experienced narrow noise exposure at 116 dB for 3 h per day over two consecutive days. Hearing ability was subsequently evaluated through auditory brainstem response (ABR) testing, and potential changes in the morphology of cochlear hair cells were assessed using immunofluorescence. The sociability and social memory of the mice were evaluated using the three-chamber social interaction test. Noise exposure resulted in complete and persistent HL in C57BL/6J mice, accompanied by severe loss of cochlear hair cells. More importantly, social memory was impaired in adult NIHL mice, whereas their sociability remained intact, these changes were accompanied by a decrease in the protein levels of the inhibitory neuron marker glutamic acid decarboxylase 67 (GAD67) in the ventral hippocampus. This study is the first to confirm that long-term auditory deprivation from HL induced by noise exposure results in social memory deficits in mice without altering their sociability.


Assuntos
Perda Auditiva Provocada por Ruído , Humanos , Adulto , Animais , Camundongos , Perda Auditiva Provocada por Ruído/metabolismo , Camundongos Endogâmicos C57BL , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Hipocampo/metabolismo , Transtornos da Memória/etiologia , Neurotransmissores/farmacologia , Limiar Auditivo/fisiologia , Cóclea/metabolismo
14.
Nature ; 623(7989): 1086-1092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914936

RESUMO

Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.


Assuntos
Neurotransmissores , Reserpina , Serotonina , Tetrabenazina , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Inibidores da Captação Adrenérgica/química , Inibidores da Captação Adrenérgica/farmacologia , Transporte Biológico/efeitos dos fármacos , Microscopia Crioeletrônica , Neurotransmissores/química , Neurotransmissores/farmacologia , Reserpina/química , Reserpina/farmacologia , Serotonina/metabolismo , Transmissão Sináptica , Tetrabenazina/química , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/ultraestrutura , Especificidade por Substrato/efeitos dos fármacos
15.
Arch Biochem Biophys ; 749: 109803, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37955112

RESUMO

Membrane cholesterol oxidation is a hallmark of redox and metabolic imbalance, and it may accompany neurodegenerative disorders. Using microelectrode recordings of postsynaptic responses as well as fluorescent dyes for monitoring synaptic vesicle cycling and membrane properties, the action of enzymatic cholesterol oxidation on neuromuscular transmission was studied in the mice diaphragms. Cholesterol oxidase (ChO) at low concentration disturbed lipid-ordering specifically in the synaptic membranes, but it did not change markedly spontaneous exocytosis and evoked release in response to single stimuli. At low external Ca2+ conditions, analysis of single exocytotic events revealed a decrease in minimal synaptic delay and the probability of exocytosis upon plasmalemmal cholesterol oxidation. At moderate- and high-frequency activity, ChO treatment enhanced both neurotransmitter and FM-dye release. Furthermore, it precluded a change in exocytotic mode from full-fusion to kiss-and-run during high-frequency stimulation. Accumulation of extracellular acetylcholine (without stimulation) dependent on vesamicol-sensitive transporters was suppressed by ChO. The effects of plasmalemmal cholesterol oxidation on both neurotransmitter/dye release at intense activity and external acetylcholine levels were reversed when synaptic vesicle membranes were also exposed to ChO (i.e., the enzyme treatment was combined with induction of exo-endocytotic cycling). Thus, we suggest that plasmalemmal cholesterol oxidation affects exocytotic machinery functioning, enhances synaptic vesicle recruitment to the exocytosis and decreases extracellular neurotransmitter levels at rest, whereas ChO acting on synaptic vesicle membranes suppresses the participation of the vesicles in the subsequent exocytosis and increases the neurotransmitter leakage. The mechanisms underlying ChO action can be related to the lipid raft disruption.


Assuntos
Acetilcolina , Colesterol Oxidase , Camundongos , Animais , Colesterol Oxidase/metabolismo , Colesterol Oxidase/farmacologia , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Transmissão Sináptica/fisiologia , Junção Neuromuscular/metabolismo , Colesterol/metabolismo , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia
16.
Environ Sci Technol ; 57(48): 19407-19418, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37988762

RESUMO

The copper hydroxide [Cu(OH)2] nanopesticide is an emerging agricultural chemical that can negatively impact aquatic organisms. This study evaluated the behavioral changes of zebrafish larvae exposed to the Cu(OH)2 nanopesticide and assessed its potential to induce neurotoxicity. Metabolomic and transcriptomic profiling was also conducted to uncover the molecular mechanisms related to potential neurotoxicity. The Cu(OH)2 nanopesticide at 100 µg/L induced zebrafish hypoactivity, dark avoidance, and response to the light stimulus, suggestive of neurotoxic effects. Altered neurotransmitter-related pathways (serotoninergic, dopaminergic, glutamatergic, GABAergic) and reduction of serotonin (5-HT), dopamine (DA), glutamate (GLU), γ-aminobutyric acid (GABA), and several of their precursors and metabolites were noted following metabolomic and transcriptomic analyses. Differentially expressed genes (DEGs) were associated with the synthesis, transport, receptor binding, and metabolism of 5-HT, DA, GLU, and GABA. Transcripts (or protein levels) related to neurotransmitter receptors for 5-HT, DA, GLU, and GABA and enzymes for the synthesis of GLU and GABA were downregulated. Effects on both the glutamatergic and GABAergic pathways in zebrafish were specific to the nanopesticide and differed from those in fish exposed to copper ions. Taken together, the Cu(OH)2 nanopesticide induced developmental neurotoxicity in zebrafish by inhibiting several neurotransmitter-related pathways. This study presented a model for Cu(OH)2 nanopesticide-induced neurotoxicity in developing zebrafish that can inform ecological risk assessments.


Assuntos
Cobre , Peixe-Zebra , Animais , Cobre/toxicidade , Serotonina/metabolismo , Serotonina/farmacologia , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia , Dopamina/metabolismo , Dopamina/farmacologia , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia , Larva/metabolismo
17.
Eur J Neurosci ; 58(9): 4011-4033, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37840191

RESUMO

Spinal motoneuron firing depends greatly on persistent inward currents (PICs), which in turn are facilitated by the neuromodulators serotonin and noradrenaline. The aim of this study was to determine whether jaw clenching (JC) and mental stress (MS), which may increase neuromodulator release, facilitate PICs in human motoneurons. The paired motor unit (MU) technique was used to estimate PIC contribution to motoneuron firing. Surface electromyograms were collected using a 32-channel matrix on gastrocnemius medialis (GM) during voluntary, ramp, plantar flexor contractions. MU discharges were identified, and delta frequency (ΔF), a measure of recruitment-derecruitment hysteresis, was calculated. Additionally, another technique was used (VibStim) that evokes involuntary contractions that persist after cessation of combined Achilles tendon vibration and triceps surae neuromuscular electrical stimulation. VibStim measures of plantar flexor torque and soleus activity may reflect PIC activation. ΔF was not significantly altered by JC (p = .679, n = 18, 9 females) or MS (p = .147, n = 14, 5 females). However, all VibStim variables quantifying involuntary torque and muscle activity during and after vibration cessation were significantly increased in JC (p < .011, n = 20, 10 females) and some, but not all, increased in MS (p = .017-.05, n = 19, 10 females). JC and MS significantly increased the magnitude of involuntary contractions (VibStim) but had no effect on GM ΔF during voluntary contractions. Effects of increased neuromodulator release on PIC contribution to motoneuron firing might differ between synergists or be context dependent. Based on these data, the background level of voluntary contraction and, hence, both neuromodulation and ionotropic inputs could influence neuromodulatory PIC enhancement.


Assuntos
Neurônios Motores , Músculo Esquelético , Feminino , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Neurônios Motores/fisiologia , Norepinefrina/farmacologia , Neurotransmissores/farmacologia
18.
Neuroscience ; 532: 103-112, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37778690

RESUMO

At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to an increase in neurotransmitter release that restores the strength of synaptic transmission following a blockade of nicotinic acetylcholine receptors (nAChRs). Mechanisms informing the presynaptic terminal of the loss of postsynaptic receptivity remain poorly understood. Previous research at the mouse NMJ suggests that extracellular protons may function as a retrograde signal that triggers an upregulation of neurotransmitter output (measured by quantal content, QC) through the activation of acid-sensing ion channels (ASICs). We further investigated the pH-dependency of PHP in an ex-vivo mouse muscle preparation. We observed that increasing the buffering capacity of the perfusion saline with HEPES abolishes PHP and that acidifying the saline from pH 7.4 to pH 7.2-7.1 increases QC, demonstrating the necessity and sufficiency of extracellular acidification for PHP. We then sought to uncover how the blockade of nAChRs leads to the pH decrease. Plasma-membrane calcium ATPase (PMCA), a calcium-proton antiporter, is known to alkalize the synaptic cleft following neurotransmission in a calcium-dependent manner. We hypothesize that since nAChR blockade reduces postsynaptic calcium entry, it also reduces the alkalizing activity of the PMCA, thereby causing acidosis, ASIC activation, and QC upregulation. In line with this hypothesis, we found that pharmacological inhibition of the PMCA with carboxyeosin induces QC upregulation and that this effect requires functional ASICs. We also demonstrated that muscles pre-treated with carboxyeosin fail to generate PHP. These findings suggest that reduced PMCA activity causes presynaptic homeostatic potentiation by activating ASICs at the mouse NMJ.


Assuntos
Cálcio , Junção Neuromuscular , Animais , Camundongos , Cálcio/metabolismo , Junção Neuromuscular/metabolismo , Transmissão Sináptica , Terminações Pré-Sinápticas/metabolismo , Canais Iônicos Sensíveis a Ácido , Neurotransmissores/farmacologia , Concentração de Íons de Hidrogênio , ATPases Transportadoras de Cálcio/farmacologia
19.
ACS Chem Neurosci ; 14(20): 3761-3771, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796021

RESUMO

In the human brain, neurophysiological activity is modulated by the movement of neurotransmitters and neurosteroids. To date, the similarity between cerebral organoids and actual human brains has been evaluated using comprehensive multiomics approaches. However, a systematic analysis of both neurotransmitters and neurosteroids from cerebral organoids has not yet been reported. Here, we performed quantitative and qualitative assessments of neurotransmitters and neurosteroids over the course of cerebral organoid differentiation. Our multiomics approaches revealed that the expression levels of neurotransmitter-related proteins and RNA, including neurosteroids, increase as cerebral organoids mature. We also found that the electrophysiological activity of human cerebral organoids increases in tandem with the expression levels of both neurotransmitters and neurosteroids. Our study demonstrates that the expression levels of neurotransmitters and neurosteroids can serve as key factors in evaluating the maturity and functionality of human cerebral organoids.


Assuntos
Neuroesteroides , Humanos , Neuroesteroides/metabolismo , Neurotransmissores/farmacologia , Neurotransmissores/metabolismo , Encéfalo/metabolismo , Organoides , Diferenciação Celular
20.
Cochrane Database Syst Rev ; 10: CD011769, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811711

RESUMO

BACKGROUND: Pharmacological interventions are frequently used for people with autism spectrum disorder (ASD) to manage behaviours of concern, including irritability, aggression, and self-injury. Some pharmacological interventions might help treat some behaviours of concern, but can also have adverse effects (AEs). OBJECTIVES: To assess the effectiveness and AEs of pharmacological interventions for managing the behaviours of irritability, aggression, and self-injury in ASD. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, 11 other databases and two trials registers up to June 2022. We also searched reference lists of relevant studies, and contacted study authors, experts and pharmaceutical companies. SELECTION CRITERIA: We included randomised controlled trials of participants of any age with a clinical diagnosis of ASD, that compared any pharmacological intervention to an alternative drug, standard care, placebo, or wait-list control. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Primary outcomes were behaviours of concern in ASD, (irritability, aggression and self-injury); and AEs. Secondary outcomes were quality of life, and tolerability and acceptability. Two review authors independently assessed each study for risk of bias, and used GRADE to judge the certainty of the evidence for each outcome. MAIN RESULTS: We included 131 studies involving 7014 participants in this review. We identified 26 studies as awaiting classification and 25 as ongoing. Most studies involved children (53 studies involved only children under 13 years), children and adolescents (37 studies), adolescents only (2 studies) children and adults (16 studies), or adults only (23 studies). All included studies compared a pharmacological intervention to a placebo or to another pharmacological intervention. Atypical antipsychotics versus placebo At short-term follow-up (up to 6 months), atypical antipsychotics probably reduce irritability compared to placebo (standardised mean difference (SMD) -0.90, 95% confidence interval (CI) -1.25 to -0.55, 12 studies, 973 participants; moderate-certainty evidence), which may indicate a large effect. However, there was no clear evidence of a difference in aggression between groups (SMD -0.44, 95% CI -0.89 to 0.01; 1 study, 77 participants; very low-certainty evidence). Atypical antipsychotics may also reduce self-injury (SMD -1.43, 95% CI -2.24 to -0.61; 1 study, 30 participants; low-certainty evidence), possibly indicating a large effect. There may be higher rates of neurological AEs (dizziness, fatigue, sedation, somnolence, and tremor) in the intervention group (low-certainty evidence), but there was no clear evidence of an effect on other neurological AEs. Increased appetite may be higher in the intervention group (low-certainty evidence), but we found no clear evidence of an effect on other metabolic AEs. There was no clear evidence of differences between groups in musculoskeletal or psychological AEs. Neurohormones versus placebo At short-term follow-up, neurohormones may have minimal to no clear effect on irritability when compared to placebo (SMD -0.18, 95% CI -0.37 to -0.00; 8 studies; 466 participants; very low-certainty evidence), although the evidence is very uncertain. No data were reported for aggression or self -injury. Neurohormones may reduce the risk of headaches slightly in the intervention group, although the evidence is very uncertain. There was no clear evidence of an effect of neurohormones on any other neurological AEs, nor on any psychological, metabolic, or musculoskeletal AEs (low- and very low-certainty evidence). Attention-deficit hyperactivity disorder (ADHD)-related medications versus placebo At short-term follow-up, ADHD-related medications may reduce irritability slightly (SMD -0.20, 95% CI -0.40 to -0.01; 10 studies, 400 participants; low-certainty evidence), which may indicate a small effect. However, there was no clear evidence that ADHD-related medications have an effect on self-injury (SMD -0.62, 95% CI -1.63 to 0.39; 1 study, 16 participants; very low-certainty evidence). No data were reported for aggression. Rates of neurological AEs (drowsiness, emotional AEs, fatigue, headache, insomnia, and irritability), metabolic AEs (decreased appetite) and psychological AEs (depression) may be higher in the intervention group, although the evidence is very uncertain (very low-certainty evidence). There was no evidence of a difference between groups for any other metabolic, neurological, or psychological AEs (very low-certainty evidence). No data were reported for musculoskeletal AEs. Antidepressants versus placebo At short-term follow-up, there was no clear evidence that antidepressants have an effect on irritability (SMD -0.06, 95% CI -0.30 to 0.18; 3 studies, 267 participants; low-certainty evidence). No data for aggression or self-injury were reported or could be included in the analysis. Rates of metabolic AEs (decreased energy) may be higher in participants receiving antidepressants (very low-certainty evidence), although no other metabolic AEs showed clear evidence of a difference. Rates of neurological AEs (decreased attention) and psychological AEs (impulsive behaviour and stereotypy) may also be higher in the intervention group (very low-certainty evidence) although the evidence is very uncertain. There was no clear evidence of any difference in the other metabolic, neurological, or psychological AEs (very low-certainty evidence), nor between groups in musculoskeletal AEs (very low-certainty evidence). Risk of bias We rated most of the studies across the four comparisons at unclear overall risk of bias due to having multiple domains rated as unclear, very few rated as low across all domains, and most having at least one domain rated as high risk of bias. AUTHORS' CONCLUSIONS: Evidence suggests that atypical antipsychotics probably reduce irritability, ADHD-related medications may reduce irritability slightly, and neurohormones may have little to no effect on irritability in the short term in people with ASD. There was some evidence that atypical antipsychotics may reduce self-injury in the short term, although the evidence is uncertain. There was no clear evidence that antidepressants had an effect on irritability. There was also little to no difference in aggression between atypical antipsychotics and placebo, or self-injury between ADHD-related medications and placebo. However, there was some evidence that atypical antipsychotics may result in a large reduction in self-injury, although the evidence is uncertain. No data were reported (or could be used) for self-injury or aggression for neurohormones versus placebo. Studies reported a wide range of potential AEs. Atypical antipsychotics and ADHD-related medications in particular were associated with an increased risk of metabolic and neurological AEs, although the evidence is uncertain for atypical antipsychotics and very uncertain for ADHD-related medications. The other drug classes had minimal or no associated AEs.


Assuntos
Antipsicóticos , Transtorno do Espectro Autista , Comportamento Autodestrutivo , Criança , Adulto , Adolescente , Humanos , Transtorno do Espectro Autista/tratamento farmacológico , Qualidade de Vida , Antipsicóticos/uso terapêutico , Antidepressivos/uso terapêutico , Agressão , Comportamento Autodestrutivo/tratamento farmacológico , Fadiga , Neurotransmissores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...